feat(analytics): Add Brand Intelligence API endpoint

New endpoint: GET /api/analytics/v2/brand/:name/intelligence

Returns comprehensive brand analytics payload including:
- Performance snapshot (active SKUs, revenue, stores, market share)
- Alerts (lost stores, delisted SKUs, competitor takeovers)
- SKU performance (velocity, status, stock levels)
- Retail footprint (penetration by region, whitespace opportunities)
- Competitive landscape (price positioning, head-to-head comparisons)
- Inventory health (days of stock, risk levels, overstock alerts)
- Promotion effectiveness (baseline vs promo velocity, lift, ROI)

Supports time windows (7d/30d/90d), state filtering, and category filtering.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
Kelly
2025-12-10 14:21:54 -07:00
parent 7d3e91b2e6
commit 9fff0ba430
4 changed files with 1641 additions and 0 deletions

View File

@@ -0,0 +1,394 @@
# Brand Intelligence API
## Endpoint
```
GET /api/analytics/v2/brand/:name/intelligence
```
## Query Parameters
| Param | Type | Default | Description |
|-------|------|---------|-------------|
| `window` | `7d\|30d\|90d` | `30d` | Time window for trend calculations |
| `state` | string | - | Filter by state code (e.g., `AZ`) |
| `category` | string | - | Filter by category (e.g., `Flower`) |
## Response Payload Schema
```typescript
interface BrandIntelligenceResult {
brand_name: string;
window: '7d' | '30d' | '90d';
generated_at: string; // ISO timestamp when data was computed
performance_snapshot: PerformanceSnapshot;
alerts: Alerts;
sku_performance: SkuPerformance[];
retail_footprint: RetailFootprint;
competitive_landscape: CompetitiveLandscape;
inventory_health: InventoryHealth;
promo_performance: PromoPerformance;
}
```
---
## Section 1: Performance Snapshot
Summary cards with key brand metrics.
```typescript
interface PerformanceSnapshot {
active_skus: number; // Total products in catalog
total_revenue_30d: number | null; // Estimated from qty × price
total_stores: number; // Active retail partners
new_stores_30d: number; // New distribution in window
market_share: number | null; // % of category SKUs
avg_wholesale_price: number | null;
price_position: 'premium' | 'value' | 'competitive';
}
```
**UI Label Mapping:**
| Field | User-Facing Label | Helper Text |
|-------|-------------------|-------------|
| `active_skus` | Active Products | X total in catalog |
| `total_revenue_30d` | Monthly Revenue | Estimated from sales |
| `total_stores` | Retail Distribution | Active retail partners |
| `new_stores_30d` | New Opportunities | X new in last 30 days |
| `market_share` | Category Position | % of category |
| `avg_wholesale_price` | Avg Wholesale | Per unit |
| `price_position` | Pricing Tier | Premium/Value/Market Rate |
---
## Section 2: Alerts
Issues requiring attention.
```typescript
interface Alerts {
lost_stores_30d_count: number;
lost_skus_30d_count: number;
competitor_takeover_count: number;
avg_oos_duration_days: number | null;
avg_reorder_lag_days: number | null;
items: AlertItem[];
}
interface AlertItem {
type: 'lost_store' | 'delisted_sku' | 'shelf_loss' | 'extended_oos';
severity: 'critical' | 'warning';
store_name?: string;
product_name?: string;
competitor_brand?: string;
days_since?: number;
state_code?: string;
}
```
**UI Label Mapping:**
| Field | User-Facing Label |
|-------|-------------------|
| `lost_stores_30d_count` | Accounts at Risk |
| `lost_skus_30d_count` | Delisted SKUs |
| `competitor_takeover_count` | Shelf Losses |
| `avg_oos_duration_days` | Avg Stockout Length |
| `avg_reorder_lag_days` | Avg Restock Time |
| `severity: critical` | Urgent |
| `severity: warning` | Watch |
---
## Section 3: SKU Performance (Product Velocity)
How fast each SKU sells.
```typescript
interface SkuPerformance {
store_product_id: number;
product_name: string;
category: string | null;
daily_velocity: number; // Units/day estimate
velocity_status: 'hot' | 'steady' | 'slow' | 'stale';
retail_price: number | null;
on_sale: boolean;
stores_carrying: number;
stock_status: 'in_stock' | 'low_stock' | 'out_of_stock';
}
```
**UI Label Mapping:**
| Field | User-Facing Label |
|-------|-------------------|
| `daily_velocity` | Daily Rate |
| `velocity_status` | Momentum |
| `velocity_status: hot` | Hot |
| `velocity_status: steady` | Steady |
| `velocity_status: slow` | Slow |
| `velocity_status: stale` | Stale |
| `retail_price` | Retail Price |
| `on_sale` | Promo (badge) |
**Velocity Thresholds:**
- `hot`: >= 5 units/day
- `steady`: >= 1 unit/day
- `slow`: >= 0.1 units/day
- `stale`: < 0.1 units/day
---
## Section 4: Retail Footprint
Store placement and coverage.
```typescript
interface RetailFootprint {
total_stores: number;
in_stock_count: number;
out_of_stock_count: number;
penetration_by_region: RegionPenetration[];
whitespace_stores: WhitespaceStore[];
}
interface RegionPenetration {
state_code: string;
store_count: number;
percent_reached: number; // % of state's dispensaries
in_stock: number;
out_of_stock: number;
}
interface WhitespaceStore {
store_id: number;
store_name: string;
state_code: string;
city: string | null;
category_fit: number; // How many competing brands they carry
competitor_brands: string[];
}
```
**UI Label Mapping:**
| Field | User-Facing Label |
|-------|-------------------|
| `penetration_by_region` | Market Coverage by Region |
| `percent_reached` | X% reached |
| `in_stock` | X stocked |
| `out_of_stock` | X out |
| `whitespace_stores` | Expansion Opportunities |
| `category_fit` | X fit |
---
## Section 5: Competitive Landscape
Market positioning vs competitors.
```typescript
interface CompetitiveLandscape {
brand_price_position: 'premium' | 'value' | 'competitive';
market_share_trend: MarketSharePoint[];
competitors: Competitor[];
head_to_head_skus: HeadToHead[];
}
interface MarketSharePoint {
date: string;
share_percent: number;
}
interface Competitor {
brand_name: string;
store_overlap_percent: number;
price_position: 'premium' | 'value' | 'competitive';
avg_price: number | null;
sku_count: number;
}
interface HeadToHead {
product_name: string;
brand_price: number;
competitor_brand: string;
competitor_price: number;
price_diff_percent: number;
}
```
**UI Label Mapping:**
| Field | User-Facing Label |
|-------|-------------------|
| `price_position: premium` | Premium Tier |
| `price_position: value` | Value Leader |
| `price_position: competitive` | Market Rate |
| `market_share_trend` | Share of Shelf Trend |
| `head_to_head_skus` | Price Comparison |
| `store_overlap_percent` | X% store overlap |
---
## Section 6: Inventory Health
Stock projections and risk levels.
```typescript
interface InventoryHealth {
critical_count: number; // <7 days stock
warning_count: number; // 7-14 days stock
healthy_count: number; // 14-90 days stock
overstocked_count: number; // >90 days stock
skus: InventorySku[];
overstock_alert: OverstockItem[];
}
interface InventorySku {
store_product_id: number;
product_name: string;
store_name: string;
days_of_stock: number | null;
risk_level: 'critical' | 'elevated' | 'moderate' | 'healthy';
current_quantity: number | null;
daily_sell_rate: number | null;
}
interface OverstockItem {
product_name: string;
store_name: string;
excess_units: number;
days_of_stock: number;
}
```
**UI Label Mapping:**
| Field | User-Facing Label |
|-------|-------------------|
| `risk_level: critical` | Reorder Now |
| `risk_level: elevated` | Low Stock |
| `risk_level: moderate` | Monitor |
| `risk_level: healthy` | Healthy |
| `critical_count` | Urgent (<7 days) |
| `warning_count` | Low (7-14 days) |
| `overstocked_count` | Excess (>90 days) |
| `days_of_stock` | X days remaining |
| `overstock_alert` | Overstock Alert |
| `excess_units` | X excess units |
---
## Section 7: Promotion Effectiveness
How promotions impact sales.
```typescript
interface PromoPerformance {
avg_baseline_velocity: number | null;
avg_promo_velocity: number | null;
avg_velocity_lift: number | null; // % increase during promo
avg_efficiency_score: number | null; // ROI proxy
promotions: Promotion[];
}
interface Promotion {
product_name: string;
store_name: string;
status: 'active' | 'scheduled' | 'ended';
start_date: string;
end_date: string | null;
regular_price: number;
promo_price: number;
discount_percent: number;
baseline_velocity: number | null;
promo_velocity: number | null;
velocity_lift: number | null;
efficiency_score: number | null;
}
```
**UI Label Mapping:**
| Field | User-Facing Label |
|-------|-------------------|
| `avg_baseline_velocity` | Normal Rate |
| `avg_promo_velocity` | During Promos |
| `avg_velocity_lift` | Avg Sales Lift |
| `avg_efficiency_score` | ROI Score |
| `velocity_lift` | Sales Lift |
| `efficiency_score` | ROI Score |
| `status: active` | Live |
| `status: scheduled` | Scheduled |
| `status: ended` | Ended |
---
## Example Queries
### Get full payload
```javascript
const response = await fetch('/api/analytics/v2/brand/Wyld/intelligence?window=30d');
const data = await response.json();
```
### Extract summary cards (flattened)
```javascript
const { performance_snapshot: ps, alerts } = data;
const summaryCards = {
activeProducts: ps.active_skus,
monthlyRevenue: ps.total_revenue_30d,
retailDistribution: ps.total_stores,
newOpportunities: ps.new_stores_30d,
categoryPosition: ps.market_share,
avgWholesale: ps.avg_wholesale_price,
pricingTier: ps.price_position,
accountsAtRisk: alerts.lost_stores_30d_count,
delistedSkus: alerts.lost_skus_30d_count,
shelfLosses: alerts.competitor_takeover_count,
};
```
### Get top 10 fastest selling SKUs
```javascript
const topSkus = data.sku_performance
.filter(sku => sku.velocity_status === 'hot' || sku.velocity_status === 'steady')
.sort((a, b) => b.daily_velocity - a.daily_velocity)
.slice(0, 10);
```
### Get critical inventory alerts only
```javascript
const criticalInventory = data.inventory_health.skus
.filter(sku => sku.risk_level === 'critical');
```
### Get states with <50% penetration
```javascript
const underPenetrated = data.retail_footprint.penetration_by_region
.filter(region => region.percent_reached < 50)
.sort((a, b) => a.percent_reached - b.percent_reached);
```
### Get active promotions with positive lift
```javascript
const effectivePromos = data.promo_performance.promotions
.filter(p => p.status === 'active' && p.velocity_lift > 0)
.sort((a, b) => b.velocity_lift - a.velocity_lift);
```
### Build chart data for market share trend
```javascript
const chartData = data.competitive_landscape.market_share_trend.map(point => ({
x: new Date(point.date),
y: point.share_percent,
}));
```
---
## Notes for Frontend Implementation
1. **All fields are snake_case** - transform to camelCase if needed
2. **Null values are possible** - handle gracefully in UI
3. **Arrays may be empty** - show appropriate empty states
4. **Timestamps are ISO format** - parse with `new Date()`
5. **Percentages are already computed** - no need to multiply by 100
6. **The `window` parameter affects trend calculations** - 7d/30d/90d